
CH378 Datasheet (II) http://wch.cn 1

USB Flash Disk and SD Card High Speed File Management

Control Chip CH378
Datasheet (II): Auxiliary Commands and USB Basic Transmission Commands

Version: 4B
http://wch.cn

1. Additional Commands
Code Command name CMD_ Input data Output data Command purpose

The following commands are auxiliary commands related to USB host mode

07H BULK_WR_TEST
Input length (2)

 Batch data write tests
Data stream (N)

08H BULK_RD_TEST Input length (2) Data stream (N) Batch data read tests

0AH READ_VAR8 Variable
address

Data Read the specified 8-bit CH378 system
variables

0BH WRITE_VAR8
Variable
address Set the specified 8-bit CH378 system

variables
Data

0CH READ_VAR32
Variable
address Data (4)

Read the specified 32-bit CH378
system variables

0DH WRITE_VAR32
Variable
address

Set the specified 32-bit CH378 system
variables

Data (4)

0EH GET_REAL_LEN Data (4)
Quickly return the actual length of the

last command execution

16H TEST_CONNECT Connection
status

Check the connection status of USB
device or SD card

25H DIRTY_BUFFER Clear internal disk and file buffers

41H CLR_STALL Endpoint
number

Generate
interrupt

Control transmission: Clear endpoint
error

45H SET_ADDRESS Address value
Generate
interrupt Control transmission: Set USB address

46H GET_DESCR Descriptor type Generate
interrupt

Control transmission: Get the descriptor

49H SET_CONFIG
Configuration

Value
Generate
interrupt

Control transmission: Set USB
configuration

4DH AUTO_SETUP Generate
interrupt

Automatically configure USB device

4EH ISSUE_CTRL_TRAN
Generate
interrupt Execute control transmission

51H DISK_INIT Generate
interrupt

Initialize USB memory

52H DISK_RESET
Generate
interrupt Reset USB storage device

53H DISK_SIZE Generate
interrupt

Get the capacity of the USB memory

http://wch.cn
http://wch.cn

CH378 Datasheet (II) http://wch.cn 2

58H DISK_INQUIRY Generate
interrupt

Query USB memory features

59H DISK_READY
Generate
interrupt Check USB memory readiness

5AH DISK_R_SENSE Generate
interrupt

Check USB memory error

5DH DISK_MAX_LUN
Generate
interrupt

Get the maximum cell number of the
USB memory device

60H SET_LONG_FILE_NA
ME

String ending in
2 zeros

 Set the filename of the long file to be
operated

61H
GET_LONG_FILE_NA

ME
Generate
interrupt

Get the corresponding long filename
from the full short filename path

62H LONG_FILE_CREATE Generate
interrupt

Create a long filename file

63H LONG_DIR_CREATE
Generate
interrupt

Create a long file name directory and
open it

64H AUTO_DEMO Generate
interrupt

Automatic chip demonstration

65H
GET_SHORT_FILE_N

AME
String ending in

2 zeros
Generate
interrupt

Get the corresponding short filename
path by the long filename

66H LONG_FILE_OPEN String ending in
2 zeros

Generate
interrupt

Open the file by the long filename

67H LONG_FILE_ERASE
String ending in

2 zeros
Generate
interrupt Delete the file by the long filename

The following commands are commands related to USB device mode

11H SET_USB_ID

VID low bytes

Set the USB vendor ID (VID) and

product ID (PID)
VID high bytes
PID low bytes
PID high bytes

13H SET_USB_SPEED
USB speed

value Set the current USB device speed

14H GET_USB_SPEED USB speed value Get the current USB device speed

17H INIT_ENDPx

Endpoint index

 Initialize USB endpoint
(External firmware)

Endpoint
number

Endpoint type
Endpoint
direction

The endpoint
package size is
at high bytes
The endpoint

package size is
at low bytes

Interrupt status
code

18H SET_INDEXx_IN
Endpoint index

 Set the working mode of IN endpoint
working mode

http://wch.cn

CH378 Datasheet (II) http://wch.cn 3

19H SET_INDEXx_OUT
Endpoint index

 Set the working mode of OUT endpoint
working mode

23H UNLOCK_USB Endpoint index Release the current USB buffer

29H RD_USB_DATA Endpoint index
Data Length Read the data block from the specified

USB endpoint buffer and release the
buffer Data stream

2AH WR_USB_DATA
Endpoint index

Write the data block to the send buffer

of the specified USB endpoint and send
the data

Data Length
Data stream

2BH WR_USB_DATA0
Data Length

Write the data block to the send buffer
of the USB control endpoint and send

the data Data stream

1.1. CMD_BULK_WR_TEST
This command is used for chip batch data write tests. Firstly write 2-byte data length, and then input
subsequent data streams one by one by length.

1.2. CMD_BULK_RD_TEST
This command is used for chip batch data read tests. Firstly write 2-byte data length, and then read
subsequent data streams one by one by length. This command is generally used in conjunction with the
command CMD_BULK_WR_TEST to test the correctness when the external system and chip carry out bulk
data transmission.

1.3. CMD_READ_VAR8
This command is used to read the specified 8-bit (single byte) file system variables. This command requires
to input 1 byte of specified variable address and output the data for this variable.

1.4. CMD_WRITE_VAR8
This command is used to set the specified 8-bit (single byte) file system variables. This command requires to
input two bytes of data, respectively the specified variable address and the specified variable data.

1.5. CMD_READ_VAR32
This command is used to read the specified 32-bit (4 bytes) file system variables. This command requires to
input 1 byte of specified variable address and output the data for this variable. The variable data has a total of
4 bytes, which are the lowest byte of data, the lower byte of data, the higher byte of data, and the highest
byte of data.

1.6. CMD_WRITE_VAR32
This command is used to set the specified 32-bit (4 bytes) file system variables. This command requires to
input 5 data, respectively specified variable address, the lowest byte of variable data, lower byte of data,
higher byte of data and the highest byte of data.

1.7. CMD_GET_REAL_LEN
This command is used to quickly return the actual length after the last command execution. Output 4 bytes
of data, which are the lowest byte of the actual length, the lower byte of the actual length, the higher byte of
the actual length, and the highest byte of the actual length in sequence. For example, after the command
CMD_BYTE_READ or CMD_SEC_READ is successfully sent and an interrupt is generated, the command
can be sent to get the number of bytes or sectors actually read.

http://wch.cn

CH378 Datasheet (II) http://wch.cn 4

1.8. CMD_TEST_CONNECT
This command is used to query the connection status of the current USB device or SD card. After
completion, USB_INT_CONNECT, USB_INT_DISCONNECT, or USB_INT_USB_READY is output.
USB_INT_CONNECT indicates that the USB device is just connected or has been connected but has not
been initialized. USB_INT_DISCONNECT indicates that the USB device has not been connected or has
been disconnected. Status USB_INT_USB_READY indicates that USB device has been connected and
initialized (USB address has been assigned). 0 indicates that the command is not completed and the status
can be read later.

1.9. CMD_DIRTY_BUFFER
This command is used to clear internal disk and file buffers in the host file mode. After being in host file
mode, CH378 always stores some frequently used data in the internal disk buffer, but when some commands
(such as CMD_RD_DISK_SEC or CMD_WR_DISK_SEC, etc.) are executed, the buffer will be used,
causing the buffer data to be invalid. In order to prevent CH378 from misusing the invalid data, it is
necessary to notify CH378 to clear the internal buffer after other commands use the internal buffer.

1.10. CMD_CLR_STALL
This command is used to clear the wrong control transmission command of the endpoint. This command
requires to input 1 byte of data to specify the endpoint number of the USB device for which errors will be
cleared. Valid values are 01H ~ 0FH for OUT endpoint and 81H ~ 8FH for IN endpoint. This command is
used to simplify the standard USB request CLEAR_FEATURE. CH378 requests an interrupt from MCU
after the command is executed. If the interrupt status is ERR_SUCCESS, the command will be executed
successfully.

1.11. CMD_SET_ADDRESS
This command is used to set the control transmission command of the USB address. This command requires
to input 1 byte of data to specify the new address USB device, and the valid addresses are 00H-7FH. This
command is used to simplify the standard USB request SET_ADDRESS. CH378 requests an interrupt from
MCU after the command is executed. If the interrupt status is ERR_SUCCESS, the command will be
executed successfully.

1.12. CMD_GET_DESCR
This command is used to get the control transmission command of the descriptor. This command requires to
input 1 byte of data to specify the type of descriptor to be obtained. The valid type is 1 or 2, corresponding to
DEVICE descriptor and CONFIGURATION descriptor. CONFIGURATION descriptor also includes the
interface descriptor and the endpoint descriptor. This command is used to simplify the standard USB request
GET_DESCRIPTOR. CH378 requests an interrupt from MCU after the command is executed. If the
interrupt status is ERR_SUCCESS, the command will be executed successfully. MCU can get the descriptor
data through the command CMD_RD_HOST_REQ_DATA.

1.13. CMD_SET_CONFIG
This command is used to set the control transmission command of the USB configuration. This command
requires to input 1 byte of data to specify a new USB configuration value. If the configuration value is 0, the
configuration will be canceled, otherwise it shall be taken from the configuration descriptor of the USB
device. This command is used to simplify the standard USB request SET_CONFIGURATION. CH378
requests an interrupt from MCU after the command is executed. If the interrupt status is ERR_SUCCESS,
the command will be executed successfully.

1.14. CMD_AUTO_SETUP
This command is used to automatically configure USB device and does not support SD card. This command

http://wch.cn

CH378 Datasheet (II) http://wch.cn 5

is used to simplify the initialization steps for the common USB device and is equivalent to the sequence of
multiple commands such as GET_DESCR, SET_ADDRESS, SET_CONFIGURATION and so on. CH378
requests an interrupt from MCU after the command is executed. If the interrupt status is ERR_SUCCESS,
the command will be executed successfully.

1.15. CMD_ISSUE_CTRL_TRAN
This command enables CH378 to execute USB control transmission. Before this command is initiated, the
8-byte SETUP package must be written to the internal buffer through the command
CMD_WR_HOST_OFS_DATA. CH378 requests an interrupt from MCU after the command is executed.
MCU can read the interrupt status as the operation status of the command. If the operation status is
ERR_SUCCESS, the command will be executed successfully; otherwise, the command will be executed
unsuccessfully. MCU can further analyze the cause of failure according to the operation status.

For OUT transaction sending data, the subsequent data packet to be sent shall be written into the internal
buffer through the command CMD_WR_HOST_OFS_DATA, followed by the 8-byte SETUP package. For
IN transaction receiving data, the received data shall be read through the command
CMD_RD_HOST_REQ_DATA after successful execution.

1.16. CMD_DISK_INIT
This command is used to initialize USB storage device and does not support SD card. The USB device shall
be enumerated before this command is executed. If the device is a USB storage device, the USB storage
device can be initialized directly through this command. After successful initialization, read and write
operations can be performed for the USB storage device. CH378 requests an interrupt from MCU after the
command is executed. If the USB device has been disconnected, the interrupt status may be
USB_INT_DISCONNECT. If the USB device is not recognized or the USB storage device is not supported,
the interrupt status will be usually USB_INT_DISK_ERR. If the USB storage device is initialized
successfully, the interrupt status will be ERR_SUCCESS.

1.17. CMD_DISK_RESET
This command is used to reset USB storage device through the control transmission and does not support SD
card. CH378 requests an interrupt from MCU after the command is executed. If the interrupt status is
ERR_SUCCESS, the command will be executed successfully.

The complete reset process includes: resetting the USB storage device through this command, resetting
Bulk-IN endpoint through the command CLR_STALL, and resetting Bulk-OUT endpoint through the
command CLR_STALL.

When an error occurs on the USB storage device, CH378 will analyze the cause of the error and
automatically select whether the USB device is reset or not as required.

1.18. CMD_DISK_SIZE
This command is used to get the capacity of the USB storage device and does not support SD card. After
successfully initializing the USB storage device, this command gets the total capacity of the USB storage
device. CH378 requests an interrupt from MCU after the command is executed. If the interrupt status is
ERR_SUCCESS, the data can be gotten through the command CMD_RD_HOST_REQ_DATA. The data is
usually 8 bytes. The first 4 bytes constitute double-word data with high bytes in the front, which is the total
number of sectors of USB storage device. The last 4 bytes constitute the double-word data with high bytes in
the front, which is the number of bytes of each sector. The result of multiplying two data is the total capacity
of USB storage device in bytes.

1.19. CMD_DISK_INQUIRY

http://wch.cn

CH378 Datasheet (II) http://wch.cn 6

This command is used to inquire the features of the USB storage device and does not support SD card.
CH378 requests an interrupt from MCU after the command is executed. If the interrupt state is
ERR_SUCCESS, the data can be gotten through the command CMD_RD_HOST_REQ_DATA. The data is
usually 36 bytes, including the features of USB storage device and the identification information of vendor
and product. This command is generally not needed unless a new logical unit is analyzed.

1.20. CMD_DISK_READY
This command is used to check whether the USB storage device is ready and does not support SD card.
CH378 requests an interrupt from MCU after the command is executed. If the interrupt status is
ERR_SUCCESS, it will indicate that the USB storage device has been ready.

1.21. CMD_DISK_R_SENSE
This command is used to check the error of the USB storage device. CH378 requests an interrupt from MCU
after the command is executed. The interrupt status is normally ERR_SUCCESS, and the error can be
analyzed after the data is gotten through the command CMD_RD_HOST_REQ_DATA.

1.22. CMD_DISK_MAX_LUN
This command is used to get the maximum logical unit number of the USB storage device through control
transmission. CH378 requests an interrupt from MCU after the command is executed. If the interrupt state is
ERR_SUCCESS, the data can be gotten through the command CMD_RD_HOST_REQ_DATA. The data is
usually 1 byte.

1.23. CMD_SET_LONG_FILE_NAME
This command is used to set the filename of the long file to be operated or the directory name. The input
data is a string ending in 2 zeros, not exceeding 520 bytes in length.

1.24. CMD_GET_LONG_FILE_NAME
This command is used to get the corresponding long filename from the full short filename path (which can
be a file or folder). Before this command is initiated, it is necessary to set the full pathname of the short
filename through the command CMD_SET_FILE_NAME. CH378 requests an interrupt from MCU after the
command is executed. If the interrupt status is ERR_SUCCESS, the data can be gotten through the command
CMD_RD_HOST_REQ_DATA. The output data includes 2-byte long filename total length (max. 520 bytes)
and subsequent long filename characters in sequence.

1.25. CMD_LONG_FILE_CREATE
This command is used to create a long filename file. If the file already exists, delete it before creating.
Before this command is initiated, it is necessary to set the full pathname of the short filename through the
command CMD_SET_FILE_NAME and then set the corresponding long filename through the command
CMD_SET_LONG_FILE_NAME. CH378 requests an interrupt from MCU after the command is executed.
If the interrupt status is ERR_SUCCESS, the long filename file will be created successfully.

1.26. CMD_LONG_DIR_CREATE
This command is used to create a long filename directory. If the directory already exists, delete it before
creating. Before this command is initiated, it is necessary to set the full pathname of the short directory name
through the command CMD_SET_FILE_NAME and then set the corresponding long filename through the
command CMD_SET_LONG_FILE_NAME. CH378 requests an interrupt from MCU after the command is
executed. If the interrupt status is ERR_SUCCESS, the long filename directory will be created successfully.

1.27. CMD_AUTO_DEMO
This command is used for automatic chip demonstration function. CH378 cannot continue to receive the

http://wch.cn

CH378 Datasheet (II) http://wch.cn 7

command codes during the automatic demonstration. The whole automatic demonstration steps are as
follows:
① RDY# pin of the chip outputs high level, and automatic demonstration is began;
② CH378 performs various internal initializations;
③ Check whether SD card or USB storage device is inserted, and give priority to SD card;
④ Initialize SD card or USB storage device. If initialization fails, go to ⑥;
⑤ Create a new file named "Chip Demo.TXT" in the root directory of SD card or USB storage device,

and write the current chip information (chip version, communication interface mode, plug-in device,
file system format, sector size, total capacity, residual capacity, etc.);

⑥ Chip automatic demonstration ends. If automatic demonstration succeeds, RDY# pin will output
low level.

After the command CMD_CHECK_EXIST detects that the communication connection is normal, the
automatic demonstration command can be sent. CH378 requests an interrupt from MCU after the command
is executed. If the interrupt status is ERR_SUCCESS, the automatic demonstration will be successful. After
the automatic demonstration ends, it is suggested that MCU send the command CMD_RESET_ALL or reset
CH378 chip through RSTI pin, and then carry out other operations.

1.28. CMD_GET_SHORT_FILE_NAME
This command is used to get the corresponding short filename and path from the file path of the short
filename and the full long filename. Before this command is initiated, it is necessary to set the pathname of
the short filename through the command CMD_SET_FILE_NAME and then set the corresponding long
filename through the command CMD_SET_LONG_FILE_NAME. CH378 requests an interrupt from MCU
after the command is executed. If the interrupt state is ERR_SUCCESS, the short filename and path will be
gotten successfully, and the data can be gotten through the command CMD_RD_HOST_REQ_DATA. The
output data includes 2-byte short filename total length (max. 300 bytes) and subsequent short filename
characters in sequence.

1.29. CMD_LONG_FILE_OPEN
This command is used to open the corresponding file from the file path of the short filename and the full
long filename. Before this command is initiated, it is necessary to set the pathname of the short filename
through the command CMD_SET_FILE_NAME and then set the corresponding long filename through the
command CMD_SET_LONG_FILE_NAME. CH378 requests an interrupt from MCU after the command is
executed. If the interrupt status is ERR_SUCCESS, the file will be opened successfully.

1.30. CMD_LONG_FILE_ERASE
This command is used to delete the corresponding file from the file path of the short filename and the full
long filename. Before this command is initiated, it is necessary to set the pathname of the short filename
through the command CMD_SET_FILE_NAME and then set the corresponding long filename through the
command CMD_SET_LONG_FILE_NAME. CH378 requests an interrupt from MCU after the command is
executed. If the interrupt status is ERR_SUCCESS, the file will be deleted successfully.

1.31. CMD_SET_USB_ID
This command is used to set the USB Vendor ID and product ID. This command requires to input four data,
which are the low 8 bits of VID, the high 8 bits of VID, the low 8 bits of PID, and the high 8 bits of PID in
sequence. If ID is required to be set, this command must be executed before the command
SET_USB_MODE.

1.32. CMD_SET_USB_SPEED
This command is used to set the transmission speed of the current USB device. It is necessary to input 1 byte

http://wch.cn

CH378 Datasheet (II) http://wch.cn 8

of USB speed code. 0x00 indicates full speed, 0x02 indicates high speed, and other values are invalid. If the
USB transmission speed is required to be set, this command must be executed before the command
SET_USB_MODE, otherwise it is configured as a high-speed device by default.

1.33. CMD_GET_USB_SPEED
This command is used to get the transmission speed of the current USB device and return 1 byte of data,
which is the actual speed code of the current USB device. 0x00 indicates full speed, 0x02 indicates high
speed, and other values are invalid. In the external firmware mode, this command shall be sent when the
device descriptor is obtained, so as to reconfigure information such as endpoint size based on the actual
speed.

1.34. CMD_INIT_ENDPx
This command is used to initialize the USB endpoint and is used only in the external firmware mode. This
command requires to input 7 bytes of data, which are endpoint index, endpoint number, endpoint type,
endpoint direction, endpoint package size high byte, endpoint package size low byte and interrupt status
code in sequence. If the endpoint is required to be initialized, this command must be executed before the
command SET_USB_MODE.

In the external firmware mode, the four default USB endpoints of CH378 are respectively configured as:
endpoint 1 interrupt upload endpoint (64 bytes), endpoint 1 batch upload endpoint (512 bytes), endpoint 2
batch upload endpoint (512 bytes), and endpoint 2 batch upload endpoint (512 bytes). The four endpoints
can be configured as interrupt or batch endpoints, upload or download endpoints according to the actual
needs. Namely, they can be configured as four download endpoints or four upload endpoints to the
maximum. If the endpoint is required to be initialized, all four endpoints must be initialized simultaneously.

1.35. CMD_SET_INDEXx_IN
This command is used to set the working mode of IN endpoint. It is necessary to input 2 bytes of data, which
are endpoint index and working mode in sequence. For example, if the USB device does not support the
USB standard request SET_INTERFACE, the transaction response mode of the transmitter at the endpoint 0
can be set through this command upon the receipt of the request, so as to return STALL to IN transaction.
The byte in the corresponding working mode byte is 0x40. Typically, this command is completed within 2uS.

Working mode of IN endpoint
Working mode

byte
Name Bit description of working mode

Bit 7
Reset

Synchronization Bit
If the bit is 1, reset the synchronization bit of

the endpoint

Bit 6 STALL setting bit If the bit is 1, set the endpoint response mode
to STALL

Bit 5 STALL clearing bit
If the bit is 1, clear STALL feature before the

endpoint

Bits 4-0 Invalid When no data is uploaded in other cases,
automatically answer NAK

1.36. CMD_SET_INDEXx_OUT
This command is used to set the working mode of OUT endpoint. It is necessary to input 2 bytes of data,
which are endpoint index and working mode in sequence. For example, if the endpoint 1 receiver has an
error, the transaction response mode of the receiver at the endpoint 1 can be set through this command, so as
to return STALL to OUT transaction. The byte in the corresponding working mode byte is 0x40. Typically,
this command is completed within 2uS.

http://wch.cn

CH378 Datasheet (II) http://wch.cn 9

Working mode of OUT endpoint
Working mode

byte
Name Bit description of working mode

Bit 7
Reset

Synchronization Bit
If the bit is 1, reset the synchronization bit of

the endpoint

Bit 6 STALL setting bit If the bit is 1, set the endpoint response mode
to STALL

Bit 5 STALL clearing bit
If the bit is 1, clear STALL feature before the

endpoint

Bits 4-0 Invalid When data download is received in other
cases, automatically answer ACK

1.37. CMD_UNLOCK_USB
This command is used to release the current USB download endpoint buffer, requiring the input of 1 byte of
endpoint index. After successfully receiving data packets downloaded by the USB host, CH378 download
endpoint firstly locks the current buffer to prevent buffer from being covered before requesting an interrupt
from MCU, suspends the USB communication of the endpoint until MCU releases the current endpoint
buffer through the command UNLOCK_USB or only after reading the data through the command
RD_USB_DATA. The command cannot be executed more or executed less.

1.38. CMD_RD_USB_DATA
This command is used to read the data block from the endpoint buffer of the current USB interrupt and
release the current buffer. This command requires to input 1 byte of endpoint index. The output data read
firstly is the data block length, namely, the number of bytes of the subsequent data stream, 2 bytes (the low
bytes are in front), with valid values ranging from 0 to 512. If the length is not 0, MCU must read the
subsequent data from CH378 one by one. After the data is read, CH378 automatically releases the current
USB endpoint buffer, so that it can continue to receive data from the USB host.

1.39. CMD_WR_USB_DATA
This command is used to write the data block to the send buffer of the specified USB endpoint and send the
data. This command requires to input several bytes of data. The input data written firstly is the endpoint
index, followed by the data length, namely, the number of bytes of the subsequent data stream, 2 bytes (the
low bytes are in front), with valid values ranging from 0 to 512. If the length is not 0, MCU must write the
subsequent data to CH378 one by one.

1.40. CMD_WR_USB_DATA0
This command is used to write the data block to the send buffer of the USB control endpoint and send the
data. This command requires to input several bytes of data. The input data written firstly is the endpoint
index, followed by the data length, namely, the number of bytes of the subsequent data stream, 1 byte, with
valid values ranging from 0 to 64. If the length is not 0, MCU must write the subsequent data to CH378 one
by one.

2. USB Device Mode
CH378 has a built-in underlying protocol in USB communication, and has a convenient built-in firmware
mode and a flexible external firmware mode. In the built-in firmware mode, CH378 automatically processes
all transactions of the default endpoint 0 (control endpoint). The local MCU is only responsible for data
exchange, so MCU program is very simple. In the external firmware mode, the external MCU processes
various USB requests according to needs, so as to realize the devices conforming to various USB class

http://wch.cn

CH378 Datasheet (II) http://wch.cn 10

specifications.

CH378 chip integrates PLL frequency multiplier, USB interface SIE, data buffer, command interpreter,
general firmware program and other major components. USB interface SIE is used for completion of
physical USB data receiving and sending, automatic processing of bit tracking and synchronization, NRZI
encoding and decoding, bit stuffing, conversion between parallel data and serial data, CRC data check,
transaction handshake, error retry and USB bus status detection, etc. The data buffer is used to buffer data
sent and received by USB interface SIE. The command interpreter is used to analyze and automatically
process various commands submitted by DSP/MCU automatically. Universal firmware programs are used to
automatically process various standard transactions of USB default endpoint 0.

There are 5 physical endpoints in CH378 chip, which are named after the endpoint index, namely index
number 0 endpoint, index number 1 endpoint, index number 2 endpoint, index number 3 endpoint and index
number 4 endpoint. In the external firmware mode, if the endpoints are not reinitialized by sending
CMD_INIT_ENDPx, all endpoints have the same function as built-in firmware.

After CH378 requests an interrupt from MCU, MCU gets the interrupt status through the command
CMD_GET_STATUS. The interrupt status is analyzed as follows:

Interrupt status
byte

Name
Analysis and description of interrupt

status
Bits 7-5 Reserved Always 000
Bits 4-3 Current

transaction
00 = OUT transaction
10 = IN transaction
11 = SETUP transaction

Bits 2-0 Current
endpoint

000 = endpoint 0
001 = endpoint 1
010 = endpoint 2
011 = endpoint 3
100 = endpoint 4
101 = USB suspended
110 = USB bus reset

The interrupt status values are described below. In the USB device mode of the built-in firmware mode,
MCU only needs to process the interrupt status marked in gray in the table, and CH378 automatically
processes other interrupt statuses.

Interrupt
status value

Status name Analysis and description of interrupt causes

0x18 USB_INT_EP0_SETUP The receiver of the control endpoint receives
the data. SETUP succeeds

0x00 USB_INT_EP0_OUT The receiver of the control endpoint receives
the data. OUT succeeds

0x10 USB_INT_EP0_IN The transmitter of the control endpoint
transmits the data. IN succeeds

0x01 USB_INT_INDEX1_OU
T

The receiver of the index number 1 endpoint
receives the data. OUT succeeds

0x11 USB_INT_INDEX1_IN The transmitter of the index number 1
endpoint transmits the data. IN succeeds

0x02 USB_INT_INDEX2_OU
T

The receiver of the index number 2 endpoint
receives the data. OUT succeeds

0x12 USB_INT_INDEX2_IN The transmitter of the index number 2

http://wch.cn

CH378 Datasheet (II) http://wch.cn 11

endpoint transmits the data. IN succeeds
0x03 USB_INT_INDEX3_OU

T
The receiver of the index number 3 endpoint
receives the data. OUT succeeds

0x13 USB_INT_INDEX3_IN The transmitter of the index number 3
endpoint transmits the data. IN succeeds

0x04 USB_INT_INDEX4_OU
T

The receiver of the index number 4 endpoint
receives the data. OUT succeeds

0x14 USB_INT_INDEX4_IN The transmitter of the index number 4
endpoint transmits the data. IN succeeds

0x05 USB_INT_BUS_SUSP USB bus suspended event
0x06 USB_INT_BUS_RESET USB bus reset detected
0x07 USB_INT_SET_CONFIG USB device receives the command

SET_CONFIG
Note: the chip will automatically clear USB device interrupts USB_INT_BUS_SUSP,
USB_INT_BUS_RESET and USB_INT_SET_CONFIG after notifying the external system.

2.1. Description of Internal Firmware
2.1.1. Index Number 0 Endpoint
The index number 0 endpoint is the control endpoint, which is bidirectional, supports upload and download
and has the maximum packet size of 64 bytes.

After successfully completing the SETUP transaction, CH378 will automatically set the synchronous trigger
flag of the receiver and transmitter for the endpoint to 1, and automatically process SETUP package.

When successfully completing the OUT transaction, CH378 will automatically trigger the synchronous
trigger flag of the receiver for the endpoint from 0 to 1 and from 1 to 0.

When successfully completing the IN transaction, CH378 will automatically trigger the synchronous trigger
flag of the transmitter for the endpoint from 0 to 1 and from 1 to 0.

2.1.2. Index Number 1 Endpoint
This endpoint is the interrupt upload endpoint with the endpoint number of 0x81 and the maximum packet
size of 64 bytes.

When successfully completing the IN transaction of the endpoint, CH378 will automatically trigger the
synchronous trigger flag of the transmitter for the endpoint from 0 to 1 and from 1 to 0. Then the external
MCU is notified by using USB_INT_INDEX1_IN as the interrupt status.

2.1.3. Index Number 2 Endpoint
This endpoint is the batch download endpoint with the endpoint number of 0x01 and the maximum packet
size of 512 bytes.

When successfully completing the OUT transaction of the endpoint, CH378 will automatically trigger the
synchronous trigger flag of the receiver for the endpoint from 0 to 1 and from 1 to 0. Then the external MCU
is notified by using USB_INT_INDEX2_OUT as the interrupt status.

2.1.4. Index Number 3 Endpoint
This endpoint is the batch upload endpoint with the endpoint number of 0x82 and the maximum packet size
of 512 bytes.

When successfully completing the IN transaction of the endpoint, CH378 will automatically trigger the
synchronous trigger flag of the transmitter for the endpoint from 0 to 1 and from 1 to 0. Then the external

http://wch.cn

CH378 Datasheet (II) http://wch.cn 12

MCU is notified by using USB_INT_INDEX3_IN as the interrupt status.

2.1.5. Index Number 4 Endpoint
This endpoint is the batch download endpoint with the endpoint number of 0x02 and the maximum packet
size of 512 bytes.

When successfully completing the OUT transaction of the endpoint, CH378 will automatically trigger the
synchronous trigger flag of the receiver for the endpoint from 0 to 1 and from 1 to 0. Then the external MCU
is notified by using USB_INT_INDEX4_OUT as the interrupt status.

2.1.6. Reference Flow
MCU program in internal firmware mode is provided in the CH378 evaluation board data. The following
procedure is used for the external MCU to handle the request for reference.
(I) After MCU is started, it first initializes CH378 as a USB device mode using internal firmware, and then

sets the interrupt.
(II) When receiving the interrupt, MCU uses the command GET_STATUS to get the interrupt status.

Analysis and processing are as follows:
(1) If the IN transaction of the index number 1 endpoint or index number 3 endpoint is successful,

the main program will be notified to continue, for example, write the next packet of data for
uploading through the command CMD_WR_USB_DATA.

(2) If OUT transaction of the index number 2 endpoint or index number 4 endpoint is successful,
the command CMD_RD_USB_DATA will be used to read the data and notify the main
program to process it.

(3) If USB bus is reset, CH378 will clear the USB address and the synchronous trigger flag, etc.

2.2. Description of External Firmware
2.2.1. Index Number 0 Endpoint
The index number 0 endpoint is the control endpoint, which is bidirectional, supports upload and download
and has the maximum packet size of 64 bytes.

After successfully completing the SETUP transaction, CH378 will automatically set the synchronous trigger
flag of the receiver and transmitter for the endpoint to 1, Then the external MCU is notified by using
USB_INT_EP0_SETUP as the interrupt status to read and process SETUP data.

When successfully completing the OUT transaction, CH378 will automatically trigger the synchronous
trigger flag of the receiver for the endpoint from 0 to 1 and from 1 to 0. Then the external MCU is notified to
read and process the data by using USB_INT_EP0_OUT as the interrupt status.

When successfully completing the IN transaction, CH378 will automatically trigger the synchronous trigger
flag of the transmitter for the endpoint from 0 to 1 and from 1 to 0. Then the external MCU is notified to
continue to process by using USB_INT_EP0_IN as the interrupt status.

2.2.2. Index Number 1 Endpoint
The endpoint is a unidirectional endpoint and can be configured as either upload or download endpoint. The
endpoint number is valid from 1 to 8, and the maximum packet size of the endpoint is 512 bytes.

The endpoint can be configured flexibly according to actual needs through the command
CMD_INIT_ENDPx. If it is not configured, it will be interrupt upload endpoint by default. The endpoint
number is 0x81, the maximum packet size of the endpoint is 64 bytes, and the generated interrupt status is
USB_INT_INDEX1_IN.

2.2.3. Index Number 2 Endpoint

http://wch.cn

CH378 Datasheet (II) http://wch.cn 13

The endpoint is a unidirectional endpoint and can be configured as either upload or download endpoint. The
endpoint number is valid from 1 to 8, and the maximum packet size of the endpoint is 512 bytes.

The endpoint can be configured flexibly according to actual needs through the command
CMD_INIT_ENDPx. If it is not configured, it will be batch download endpoint by default. The endpoint
number is 0x01, the maximum packet size of the endpoint is 512 bytes, and the generated interrupt status is
USB_INT_INDEX2_OUT.

2.2.4. Index Number 3 Endpoint
The endpoint is a unidirectional endpoint and can be configured as either upload or download endpoint. The
endpoint number is valid from 1 to 8, and the maximum packet size of the endpoint is 512 bytes.

The endpoint can be configured flexibly according to actual needs through the command
CMD_INIT_ENDPx. If it is not configured, it will be batch upload endpoint by default. The endpoint
number is 0x82, the maximum packet size of the endpoint is 512 bytes, and the generated interrupt status is
USB_INT_INDEX3_IN.

2.2.5. Index Number 4 Endpoint
The endpoint is a unidirectional endpoint and can be configured as either upload or download endpoint. The
endpoint number is valid from 1 to 8, and the maximum packet size of the endpoint is 512 bytes.

The endpoint can be configured flexibly according to actual needs through the command
CMD_INIT_ENDPx. If it is not configured, it will be interrupt upload endpoint by default. The endpoint
number is 0x02, the maximum packet size of the endpoint is 512 bytes, and the generated interrupt status is
USB_INT_INDEX4_OUT.

2.2.6. Reference Flow
MCU program in external firmware mode is provided in the CH378 evaluation board data. The following
procedure is used for the external MCU to handle the request for reference.
(I) After MCU is started, firstly initialize CH378 as a USB device mode using external firmware. According

to needs, the four index endpoints of CH378 can be reconfigured. This operation must be done before the
command SET_USB_MODE is sent, and the four index endpoints must be configured at the same time,
and then the interrupt must be set.

(II) When receiving the interrupt, MCU uses the command GET_STATUS to get the interrupt status.
Analysis and processing are as follows:

(1) If the IN transaction of the index number x endpoint (the valid values are 1-4) is successful,
the main program will be notified to continue, for example, write the next packet of data for
uploading through the command CMD_WR_USB_DATA.

(2) If OUT transaction of the index number x endpoint (the valid values are 1-4) is successful,
the command CMD_RD_USB_DATA will be used to read the data and notify the main
program to process it.

(3) If the SETUP transaction of the index number 0 endpoint (control endpoint) is successful,
the command CMD_RD_USB_DATA will be used to read the data. Analysis and processing
are as follows.
(a) If it is a USB request CLEAR_FETURE, analyze and process according to FETURE in

the request and the endpoint number. For requests that need to return STALL, set
through the command SET_INDEXx_IN.

(b) If it is a USB request GET_DESCRIPTOR, use the command CMD_WR_USB_DATA0
to return all descriptors or the first 64 bytes of the descriptors, and save the USB
request and the current descriptor count for subsequent return.

(c) If it is a USB request SET_ADDRESS, save the USB address value set by the host. No

http://wch.cn

CH378 Datasheet (II) http://wch.cn 14

other processing is required. This command is automatically processed by CH378 chip.
(d) If it is a USB request SET_CONFIG, save the set value, and notify the main program

whether the USB initialization is successful or not.
(e) If it is a USB request GET_CONFIG, use the command CMD_WR_USB_DATA0 to

return the current configuration value.
(f) If it is a USB request GET_INTERFACE, use the command CMD_WR_USB_DATA0

to return the current interface value.
(g) If it is a USB request GET_STATUS, use the command CMD_WR_USB_DATA0 to

return the current status value.
(h) Other USB requests are handled as needed. If it is not supported, use the command

SET_INDEXx_IN to set the response to STALL.
(4) If the OUT transaction of the index number 0 endpoint (control endpoint) is successful, the

command CMD_RD_USB_DATA will be used to read the data. The data can be discarded.
(5) If the IN transaction of the index number 0 endpoint (control endpoint) is successful, and the

previous USB request is GET_DESCRIPTOR, the command CMD_WR_USB_DATA0 will
be used to return the residual descriptors.

(6) If USB bus is reset, CH378 will clear the USB address and the synchronous trigger flag, etc.

http://wch.cn

	1. Additional Commands
	1.1. CMD_BULK_WR_TEST
	1.2. CMD_BULK_RD_TEST
	1.3. CMD_READ_VAR8
	1.4. CMD_WRITE_VAR8
	1.5. CMD_READ_VAR32
	1.6. CMD_WRITE_VAR32
	1.7. CMD_GET_REAL_LEN
	1.8. CMD_TEST_CONNECT
	1.9. CMD_DIRTY_BUFFER
	1.10. CMD_CLR_STALL
	1.11. CMD_SET_ADDRESS
	1.12. CMD_GET_DESCR
	1.13. CMD_SET_CONFIG
	1.14. CMD_AUTO_SETUP
	1.15. CMD_ISSUE_CTRL_TRAN
	1.16. CMD_DISK_INIT
	1.17. CMD_DISK_RESET
	1.18. CMD_DISK_SIZE
	1.19. CMD_DISK_INQUIRY
	1.20. CMD_DISK_READY
	1.21. CMD_DISK_R_SENSE
	1.22. CMD_DISK_MAX_LUN
	1.23. CMD_SET_LONG_FILE_NAME
	1.24. CMD_GET_LONG_FILE_NAME
	1.25. CMD_LONG_FILE_CREATE
	1.26. CMD_LONG_DIR_CREATE
	1.27. CMD_AUTO_DEMO
	1.28. CMD_GET_SHORT_FILE_NAME
	1.29. CMD_LONG_FILE_OPEN
	1.30. CMD_LONG_FILE_ERASE
	1.31. CMD_SET_USB_ID
	1.32. CMD_SET_USB_SPEED
	1.33. CMD_GET_USB_SPEED
	1.34. CMD_INIT_ENDPx
	1.35. CMD_SET_INDEXx_IN
	1.36. CMD_SET_INDEXx_OUT
	1.37. CMD_UNLOCK_USB
	1.38. CMD_RD_USB_DATA
	1.39. CMD_WR_USB_DATA
	1.40. CMD_WR_USB_DATA0

	2. USB Device Mode
	2.1. Description of Internal Firmware
	2.1.1. Index Number 0 Endpoint
	2.1.2. Index Number 1 Endpoint
	2.1.3. Index Number 2 Endpoint
	2.1.4. Index Number 3 Endpoint
	2.1.5. Index Number 4 Endpoint
	2.1.6. Reference Flow

	2.2. Description of External Firmware
	2.2.1. Index Number 0 Endpoint
	2.2.2. Index Number 1 Endpoint
	2.2.3. Index Number 2 Endpoint
	2.2.4. Index Number 3 Endpoint
	2.2.5. Index Number 4 Endpoint
	2.2.6. Reference Flow

